NCBI Entrez Direct / E-utilities

Pakiet NCBI Entrez Direct umożliwia dostęp do baz danych serwisu NCBI przy użyciu wiersza poleceń.

Zad. 1

W terminalu wpisz polecenie z pakietu NCBI Entrez Direct: einfo -dbs

- 1. Ile baz danych jest obsługiwanych przez pakiet (połącz polecenie z odpowiednim poleceniem Linuxa)?
- 2. Wyświetl informacje o nukleotydowej bazie danych: einfo -db nucleotide
 - Jak nazywa się format danych, który otrzymałe/aś?
 - Ile sekwencji znajduje się w bazie nukleotydowej (`<Count>`)?

3. Ile artykułów znajduje się w bazie PubMed?

Zad. 2

W przeglądarce internetowej otwórz stronę NCBI, wybierz bazę `Protein` i przejdź do zaawansowanego wyszukiwania

(`Advanced`). Utwórz zapytanie w celu znalezienia wszystkich białek kodowanych przez gen o nazwie `TNRC6A` pochodzących z człowieka i bazy danych RefSeq.

1. Podaj użyte zapytanie (pole `Search details`).

2. Ile rekordów znaleziono?

Zad. 3

W terminalu uruchom poniższe polecenie.

esearch -db protein -query "TNRC6A[Gene Name] AND Homo sapiens[Organism] AND refseq[Filter]"

1. Ile rekordów znaleziono?

2. Uruchom poniższe polecenia i odpowiedz do czego służy polecenie `xtract`.

esearch -db protein -query "TNRC6A[Gene Name] AND Homo sapiens[Organism] AND refseq[Filter]" | xtract -outline

esearch -db protein -query "TNRC6A[Gene Name] AND Homo sapiens[Organism] AND refseq[Filter]" | xtract -pattern ENTREZ_DIRECT -element Count

Zad. 4

Uruchom poniższe polecenie.

esearch -db protein -query "TNRC6A[Gene Name] AND Homo sapiens[Organism] AND refseq[Filter]" | efetch -format fasta

1. Do czego służy polecenie 'efetch'?

2. Zmodyfikuj polecenie, aby wyświetlić sekwencje w formacie GenBank (skorzystaj z `efetch -help`).

Zad. 5

Korzystając z poleceń 'esearch' i 'efetch' wyszukaj sekwencje białkowe w formacie FASTA, które mają w tytule rekordu wyraz 'caspase' i pochodzą z *Bacillus subtilis*.

1. Ile białek znaleziono?

2. Podaj użyte polecenie.

Zad. 6

Korzystając z poleceń `esearch` i `efetch` przeszukaj nukleotydową bazę i wyświetl w formacie GenBank wszystkie cząsteczki mRNA ludzkiego genu o nazwie TNRC6A pochodzące z bazy RefSeq. Jeżeli nie masz pewności jak utworzyć zapytania do bazy NCBI, przećwicz je najpierw w przeglądarce internetowej.

1. Ile sekwencji znaleziono?

2. Podaj użyte polecenie.

Zad. 7

Przy użyciu poleceń Linuxa zmodyfikuj polecenie z poprzedniego zadania, aby odpowiedzieć na następujące pytania:

1. Na którym chromosomie znajdują się znalezione geny?

2. Jaka jest łączna liczba egzonów we wszystkich znalezionych sekwencjach?

3. Wyświetl linie rekordów zaczynające się od 'LOCUS' i uszereguj je ze względu na malejącą długość sekwencji.

LOCUS	XM_024450231	8606 bp	mRNA	linear	PRI 28-FEB-2021
LOCUS	XM_017023145	8537 bp	mRNA	linear	PRI 28-FEB-2021
LOCUS	NM_001351850	8506 bp	mRNA	linear	PRI 19-FEB-2021

4. Wyświetl listę niepowtarzających się identyfikatorów do bazy PubMed. PUBMED 11950943

PUBMED	12831532
PUBMED	13130130

Zad. 8

Uruchom poniższe dwa polecenia:

esearch -db nucleotide -query "TNRC6A[Gene Name] AND Homo sapiens[Organism] AND refseq[Filter] AND mrna[Filter]" | efetch -format docsum

esearch -db nucleotide -query "TNRC6A[Gene Name] AND Homo sapiens[Organism] AND refseq[Filter] AND mrna[Filter]" | efetch -format docsum | xtract -outline

Następnie zmodyfikuj drugie polecenie, aby uzyskać poniższe wyniki:

NM_014494	8491	mRNA	linear	human	2021/04/15
XM_017023152	6771	mRNA	linear	human	2021/02/28
XM_024450233	6828	mRNA	linear	human	2021/02/28

Zad. 9

Przy pomocy narzędzi 'esearch', 'efetch', 'xtract' i 'sort' utwórz jedno polecenie, które wyszuka w bazie 'gene' wszystkie geny o nazwie BRCA2 u naczelnych, tak aby wyświetlić poniższą listę (tj. identyfikator, nazwa genu, organizm) uszeregowaną ze wzgledu na nazwe organizmu.

01	1 0	
105726195	BRCA2	Aotus nancymaae
100397509	BRCA2	Callithrix jacchus
103267329	BRCA2	Carlito syrichta
108310783	BRCA2	Cebus imitator
105587897	BRCA2	Cercocebus atys

Zad. 10

Skorzystaj z polecenia 'efetch' wyświetlające sekwencje FASTA o numerach dostępu: NP_476567 i NP_476565 ('efetch -h').

Zad. 11

Wyświetl abstrakty artykułów bazy PubMed dotyczących schizofrenii i opublikowanych w ciągu ostatnich 30 dni. Podaj użyte polecenie. <u>Wskazówka:</u> Ograniczenie wyników ze względu na czas opublikowania umożliwi polecenie <u>efilter</u>.

1. Ile artykułów znaleziono?

2. Podaj użyte polecenie.

Zad. 12

Korzystając z narzędzia <u>elink</u> wyszukaj wszystkie sekwencje białkowe, o których mowa w artykułach o schizofrenii z ostatnich 30 dni. Podaj użyte polecenie oraz liczbę sekwencji.

Zad. 13

Podaj polecenie 'efetch', które wyświetli abstrakty trzech artykułów o identyfikatorach PubMed: 24102982, 21171099, 17150207.

Zad. 14 (Python dla chętnych)

Pobierz plik <u>http://www.combio.pl/files/vertebrates.txt</u>. Napisz skrypt, który dla każdego organizmu z pliku wyszuka (korzystając z Entrez Direct) sekwencje białkowe genu TNRC6A z bazy RefSeq. Znalezione sekwencje w obrębie organizmu powinny zostać zapisane w osobnym pliku tekstowym w formacie FASTA. Na przykład, sekwencje białkowe TNRC6A dla organizmu *Mus musculus* powinny zostać zapisane w pliku `mus_musculus.fasta`. Uwzględnij w skrypcie sugestię NCBI, aby nie przekraczać trzech zapytań do bazy w ciągu 1 sekundy.